The testis-enriched histone demethylase, KDM4D, regulates methylation of histone H3 lysine 9 during spermatogenesis in the mouse but is dispensable for fertility

N Iwamori, M Zhao, ML Meistrich… - Biology of …, 2011 - academic.oup.com
N Iwamori, M Zhao, ML Meistrich, MM Matzuk
Biology of reproduction, 2011academic.oup.com
Epigenetic modifications, and methylation of histones in particular, dynamically change
during spermatogenesis. Among various methylations of histone H3, methylation of histone
H3 lysine 9 (H3K9) and its regulation are essential for spermatogenesis.
Trimethytransferases as well as dimethyltransferase are required for meiotic progression. In
addition, didemethylase of H3K9 is also critical for spermatogenesis through transcriptional
regulation of spermatid-specific genes. However, the requirement for demethylation of …
Abstract
Epigenetic modifications, and methylation of histones in particular, dynamically change during spermatogenesis. Among various methylations of histone H3, methylation of histone H3 lysine 9 (H3K9) and its regulation are essential for spermatogenesis. Trimethytransferases as well as dimethyltransferase are required for meiotic progression. In addition, didemethylase of H3K9 is also critical for spermatogenesis through transcriptional regulation of spermatid-specific genes. However, the requirement for demethylation of trimethylated H3K9 (H3K9me3) during spermatogenesis remains to be elucidated. Here, we report the targeted disruption of KDM4D, a testis-enriched tridemethylase of H3K9. Kdm4d-null mice are viable and fertile and do not show any obvious phenotype. However, H3K9me3 accumulates significantly in Kdm4d-null round spermatids, and the distribution of methylated H3K9 in germ cells is dramatically changed. Nevertheless, the progression of spermatogenesis and the number of spermatozoa are normal, likely secondary to the earlier nuclear localization of another H3K9 tridemethylase, KDM4B, in Kdm4d-null elongating spermatids. These results suggest that demethylation of H3K9me3 in round spermatids is dispensable for spermatogenesis but that possible defects in Kdm4d-null elongating spermatids could be rescued by functional redundancy of the KDM4B demethylase.
Oxford University Press