[HTML][HTML] Lipid metabolism in oncology: why it matters, how to research, and how to treat

Y Matsushita, H Nakagawa, K Koike - Cancers, 2021 - mdpi.com
Y Matsushita, H Nakagawa, K Koike
Cancers, 2021mdpi.com
Simple Summary Metabolic reprogramming is gaining attentions as a hallmark of cancers.
However, lipid metabolism has been difficult to analyze due to technical problems. In recent
years, lipidomics techniques such as mass spectrometry have advanced and allowed us to
analyze detailed lipid profiles of cancers. Moreover, it has become clear that changes in lipid
metabolism also play an important role in the interaction between the cancers and the
surrounding microenvironment. This review summarizes the latest research progress of …
Simple Summary
Metabolic reprogramming is gaining attentions as a hallmark of cancers. However, lipid metabolism has been difficult to analyze due to technical problems. In recent years, lipidomics techniques such as mass spectrometry have advanced and allowed us to analyze detailed lipid profiles of cancers. Moreover, it has become clear that changes in lipid metabolism also play an important role in the interaction between the cancers and the surrounding microenvironment. This review summarizes the latest research progress of reprogrammed lipid metabolism and also lipidomics technologies applied in cancer research.
Abstract
Lipids in our body, which are mainly composed of fatty acids, triacylglycerides, sphingolipids, phospholipids, and cholesterol, play important roles at the cellular level. In addition to being energy sources and structural components of biological membranes, several types of lipids serve as signaling molecules or secondary messengers. Metabolic reprogramming has been recognized as a hallmark of cancer, but changes in lipid metabolism in cancer have received less attention compared to glucose or glutamine metabolism. However, recent innovations in mass spectrometry- and chromatography-based lipidomics technologies have increased our understanding of the role of lipids in cancer. Changes in lipid metabolism, so-called “lipid metabolic reprogramming”, can affect cellular functions including the cell cycle, proliferation, growth, and differentiation, leading to carcinogenesis. Moreover, interactions between cancer cells and adjacent immune cells through altered lipid metabolism are known to support tumor growth and progression. Characterization of cancer-specific lipid metabolism can be used to identify novel metabolic targets for cancer treatment, and indeed, several clinical trials are currently underway. Thus, we discuss the latest findings on the roles of lipid metabolism in cancer biology and introduce current advances in lipidomics technologies, focusing on their applications in cancer research.
MDPI