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The majority of cancer cells have a functional mitochondrial electron transport chain (ETC). Mitochondrial complex I is the
primary entry point into the ETC, where oxidative phosphorylation occurs, generating ATP as an energy source for
powering the cell. Electrons are transferred through a chain of mitochondrial protein complexes (complex I, II, III, and IV)
to the final electron acceptor, molecular oxygen, while protons are pumped by complexes I, III, and IV to create an
electrochemical proton gradient, ultimately driving ATP synthesis through complex V. The ETC can function optimally
even in hypoxic conditions, allowing solid tumors, which often have limited oxygen availability, to maintain mitochondrial
respiration. Mitochondrial ETC function is intrinsically linked to the oxidative tricyclic acid (TCA) cycle, which supports
tumor growth by enabling macromolecule biosynthesis (1). Genetic and pharmacologic inhibition of the ETC prevents de
novo pyrimidine synthesis and oxidative TCA cycle flux, supporting lipid, heme, aspartate, and asparagine production, all
of which act together to decrease primary tumor growth and metastasis (2). Furthermore, mutations in ETC genes are
generally selected against across various types of cancer (3). Thus, mitochondrial metabolism is an essential, dynamic
process throughout tumorigenesis, with metabolic flexibility serving the tumor’s needs at every stage, from initiation to
metastasis. Ultimately, the metabolic demand imposed by driver mutations on specific tissue lineages, coupled with
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The majority of cancer cells have a func-
tional mitochondrial electron transport 
chain (ETC). Mitochondrial complex I 
is the primary entry point into the ETC, 
where oxidative phosphorylation occurs, 
generating ATP as an energy source for 
powering the cell. Electrons are transferred 
through a chain of mitochondrial protein 
complexes (complex I, II, III, and IV) to the 
final electron acceptor, molecular oxygen, 
while protons are pumped by complexes 
I, III, and IV to create an electrochemical 
proton gradient, ultimately driving ATP 
synthesis through complex V. The ETC can 
function optimally even in hypoxic condi-
tions, allowing solid tumors, which often 
have limited oxygen availability, to main-
tain mitochondrial respiration. Mitochon-
drial ETC function is intrinsically linked 
to the oxidative tricyclic acid (TCA) cycle, 
which supports tumor growth by enabling 
macromolecule biosynthesis (1). Genetic 
and pharmacologic inhibition of the ETC 
prevents de novo pyrimidine synthesis and 
oxidative TCA cycle flux, supporting lipid, 
heme, aspartate, and asparagine produc-
tion, all of which act together to decrease 
primary tumor growth and metastasis (2). 
Furthermore, mutations in ETC genes are 
generally selected against across various 
types of cancer (3). Thus, mitochondrial 
metabolism is an essential, dynamic pro-
cess throughout tumorigenesis, with met-
abolic flexibility serving the tumor’s needs 
at every stage, from initiation to metas-
tasis. Ultimately, the metabolic demand 
imposed by driver mutations on specific 
tissue lineages, coupled with nutrient or 
metabolite availability of tissue microen-
vironment, determines the dependency 

on any intracellular metabolic pathways, 
including ETC-linked pathways. Owing to 
the critical role of mitochondria in tumor 
growth, there is considerable interest in 
translating inhibition of mitochondrial 
ETC or TCA cycle metabolism into clinical 
practice (1). However, clinical trials with 
drugs targeting mitochondrial metabo-
lism, including metformin, have largely 
failed (4). Here, we discuss the mecha-
nisms underlying why these trials have 
failed and a possible path forward to suc-
cessfully targeting mitochondria metabo-
lism, using metformin as an example, for 
cancer therapy.

Toxicity of mitochondrial 
metabolism–targeting drugs
Multiple inhibitors that target mitochon-
drial metabolism have been tried in clin-
ical trials, including CPI-613 (also known 
as devimistat), CB-839 (also known 
as telaglenastat), ONC201, and IACS-
010759. CPI-613 is a lipoate analog that 
purportedly inhibits 2 tricyclic acid (TCA) 
cycle enzyme complexes, α-ketoglutarate 
dehydrogenase and pyruvate dehydroge-
nase. Although the exact mechanism of 
CPI-613’s anticancer activity is unclear, 
promising phase I outcomes in pancreatic 
cancer and acute myeloid leukemia (AML) 
trials have been reported (NCT01835041 
and NCT01034475). However, CPI-613 
in combination with FOLFIRINOX did 
not have a survival benefit compared with 
FOLFIRINOX alone for patients with 
previously untreated metastatic pancre-
atic ductal adenocarcinoma (AVENGER 
500 trial, NCT03504423). CB-839 is a 
glutaminase inhibitor that prevents glu-

taminolysis from feeding the TCA cycle. 
In a phase II clinical trial, CB-839 failed 
to provide benefit compared with stan-
dard-of-care immunotherapy in patients 
with stage IV non–small cell lung cancer 
(NSCLC) tumors harboring loss-of-func-
tion mutations in KEAP1 (KEAPSAKE 
trial, NCT04265534). IACS-010759 is a 
potent mitochondrial complex I inhibitor 
that showed impressive preclinical effica-
cy in AML and brain cancer models and 
was well tolerated in mouse models (5, 6). 
However, a recent phase I trial in relapsed/
refractory AML revealed a narrow thera-
peutic index and dose-limiting toxicities, 
such as lactic acidosis and neurotoxicity 
(5). Targeting mitochondrial metabolism 
is hindered by toxic side effects limiting 
efficacious antineoplastic dosing (7). This 
is not surprising given that mitochondrial 
electron transport chain (ETC) function is 
necessary for the function of normal tissue, 
including conventional T cells (8). Thus, 
successful clinical translation of targeting 
mitochondrial metabolism requires an 
effective, yet safe and well-tolerated, drug. 
Additionally, two promising phase I stud-
ies (NCT03416530 and NCT03134131) 
demonstrated that ONC201, an activator 
of the mitochondrial caseinolytic protease 
P (CLPP) that results in impaired respira-
tory function, demonstrated efficacy as a 
monotherapy in H3K27M-mutant diffuse 
midline gliomas (9). ONC201 was origi-
nally developed as a brain-penetrant dopa-
mine receptor D2 (DRD2) antagonist and 
is tolerable for cancer therapy (10, 11).

One such drug that targets mitochon-
drial metabolism is metformin, a bigua-
nide widely used as first-line treatment 
for type II diabetes mellitus. Laborato-
ry-based studies have shown that met-
formin has an anticancer effect, and retro-
spective studies have reported a reduced 
incidence of cancer diagnoses and can-
cer-related deaths in patients treated 
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antitumorigenic effects and clinical tri-
al results, a better understanding of the 
molecular mechanisms required for met-
formin’s action is needed.

The cellular environment 
influences mitochondrial 
metabolism inhibitors
As a mitochondrial ETC inhibitor, met-
formin should theoretically be toxic, but it 
has a high safety profile, which is attribut-
ed to its reliance on organic cation trans-
porters (OCTs) for cellular entry (Figure 1). 
OCTs are highly abundant in normal kid-
ney, gut, and liver cells and can transport 
various compounds, including polyam-
ines, thiamine, carnitine, dopamine, and 
acetylcholine. When administered orally, 
metformin has a “flip-flop” pharmaco-

of metformin in various cancers, and oth-
er trials have not shown robust anticancer 
efficacy (16). For instance, a recent stage 
II clinical trial in ovarian cancer demon-
strated better-than-expected overall sur-
vival in the metformin-treated group, 
while a phase III randomized trial that 
included over 3,600 patients with breast 
cancer failed to show an improvement in 
disease-free survival with the addition of 
metformin to standard-of-care treatment 
(4). Similarly, metformin failed to show 
any benefit in phase II randomized trials 
in NSCLC when combined with chemora-
diotherapy (17, 18). Although various oth-
er studies have shown promising results, 
the clinical benefit of metformin remains 
unclear (16). Due to the inconsistency 
between preclinical data on metformin’s 

with metformin (1). While metformin has 
various proposed mechanisms of action, 
inhibition of mitochondrial complex I is 
required for metformin’s antitumorigenic 
effect (12, 13). Inhibition of mitochondri-
al complex I decreases glucose flux into 
macromolecule biosynthesis by inhibiting 
the oxidative TCA cycle. Metformin has 
been shown to have an antitumorigenic 
effect in patients with ovarian and breast 
cancer by targeting tumor cell–intrinsic 
mitochondrial metabolism (14, 15). In 
patients with breast cancer, integrated 
pharmacodynamic analysis has identified 
two metabolic adaptation pathways for 
metformin resistance: increased glucose 
flux and increased transcription of oxida-
tive phosphorylation genes. Nevertheless, 
some clinical trials have reported efficacy 

Figure 1. Drugs that target the mitochondrial electron transport chain in cancer cells have antineoplastic properties. Mitochondrial electron transport 
chain (ETC) is necessary to sustain metabolites required for cancer cell growth. Metformin’s primary anticancer mechanism involves the inhibition of mito-
chondrial ETC complex I. The drug’s safety and efficacy are associated with organic cation transporters (OCTs), which have varying presence across regular 
tissues and cancers. Metformin relies on OCTs for cell entry, and variability in OCT expression levels along with the ability of cancer cells to metabolically 
adjust to the tumor microenvironment might account for inconsistent results in clinical trials. New drugs on the horizon targeting the ETC include the anti-
malaria drug atovaquone, an inhibitor of mitochondrial complex III, and ONC201, an activator of mitochondrial protease caseinolytic protease P (CLPP) that 
degrades ETC proteins. The molecular determinants that would make these drugs effective and their specific therapeutic window need to be addressed.
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become resistant to standard-of-care ther-
apy (27). Thus, these tumors could be suit-
able to ETC inhibition by metformin, pro-
vided they have robust expression of OCTs. 
Moreover, the use of PET imaging to assess 
hypoxia as well as other techniques to 
assess in vivo tumor metabolism (28) could 
be integrated as part of future clinical trials 
to assess efficacy of drugs that target ETC. 
By understanding how genetics drive meta-
bolic vulnerabilities to mitochondrial inhib-
itors such as metformin through expression 
of OCTs, deciphering the best combination 
therapy regiments, and assessing patient 
tumor metabolic status, we can stratify 
patients for effective, evidence-based tar-
geted metabolic therapy.
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